BASIC**問題篇**

- 1 $0° \le \theta \le 180°$ とする。次の三角比の値を求めよ。
 - (1) $\tan \theta = \frac{1}{2} \mathcal{O} \succeq \mathfrak{F}, \cos \theta, \sin \theta$
 - (2) $\tan \theta = -3 \mathcal{O} \succeq \mathfrak{F}, \cos \theta, \sin \theta$
- 2 0° $\leq \theta \leq 180$ °のとき、次のような θ を求めよ。
 - (1) $2\sin\theta 1 = 0$

(2) $\sqrt{2}\cos\theta + 1 = 0$

(3) $3\tan\theta = \sqrt{3}$

- (4) $(\cos \theta + 1)(2\cos \theta 1) = 0$
- ③ \triangle ABCにおいて、 $a=\sqrt{6}$ 、 $A=60^{\circ}$ 、 $C=45^{\circ}$ のとき、c と外接円の半径 R を求めよ。
- 4 △ABCにおいて、次のものを求めよ。
 - (1) c=4, a=6, $B=60^{\circ}$ O \geq δ
 - (2) a=3, $b=\sqrt{2}$, $c=\sqrt{17}$ のとき C
- ⑤ \triangle ABC において、AB=2、BC= $\sqrt{7}$ 、CA=3とする。 \triangle ABC の外接円の半径 R と、内接円の半径 r を求めよ。

STANDARD問題篇

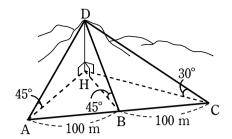
- ⑥ θ が $0^{\circ} < \theta < 90^{\circ}$ かつ $\cos \theta \sin \theta = \frac{1}{2}$ を満たすとき, $\cos \theta + \sin \theta$, $\cos^3 \theta + \sin^3 \theta$ の値を求めよ。
- | 7 円に内接する四角形 ABCD において、AB=2、BC=2、CD=3、DA=4とする。次の値を求めよ。
 - (1) ACの長さ

- (2) 四角形 ABCD の面積
- (3) 2つの対角線 ACと BD の交点を E とすると BE: ED の比
- 图 a=5, b=6, c=4 の \triangle ABC がある。頂角 A の二等分線と辺 BC の交点を D, 辺 BC の中点を M とするとき、線分 AD、AM の長さを求めよ。
- [9] △ABCが次の条件を満たすとすれば、どんな三角形か。
 - (1) $\sin A = \sin B$
 - (2) $\sin A \cos A = \sin B \cos B$

2 / 10

実戦問題篇

[10] 右の図のように 1 つの直線上に並ぶ水平面上 の 3 点 A, B, Cから山頂 D の仰角を測ると, それぞれ 45°, 45°, 30° であったという。 AB=100 m, BC=100 m であるとき, 山の 高さを求めよ。



III AB=4, AE=AD=3 である直方体

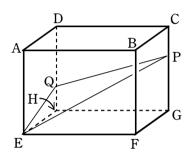
ABCD-EFGH において、辺 CG と辺 HD を 1:2 に内分する点をそれぞれ P と Q とする。このとき、

 $EP = {}^{7}$ C, $\cos \angle EQP = {}^{1}$ C

さらに、 $\triangle EPQ$ の面積は 7 で、三角錐

AEPQ の体積は Toある。また, 点 A から

 \triangle EPQ に下ろした垂線の長さは $^{^{\dagger}}$ である。



[12] \triangle ABCにおいて,頂角 \angle A, \angle B, \angle C の大きさをそれぞれ A, B, C とし,辺 BC, CA, AB の長さをそれぞれ a, b, c とする.次の関係式が成立するとき, \triangle ABC はど のような形の三角形か.

 $a\sin A(\sin B - \sin C) = b\sin^2 B - (b+c)\sin B\sin C - c\cos^2 C + c$

回角形 ABCD において、3 辺の長さをそれぞれ AB=5, BC=8, CD=4, 対角線 AC の長さを AC=7 とする。

このとき, $\cos \angle ABC = \frac{7}{1}$, $\sin \angle ABC = \frac{\sqrt{\dot{7}}}{1}$ である。

ここで、四角形 ABCD は台形であるとする。

CD オ AB·sin ∠ABC であるから, カ である。

0 <

(1) =

2 >

③ 辺ADと辺BCが平行

④ 辺 AB と辺 CD が平行

① 解答 (1)
$$\cos \theta = \frac{2}{\sqrt{5}}$$
, $\sin \theta = \frac{1}{\sqrt{5}}$ (2) $\cos \theta = -\frac{1}{\sqrt{10}}$, $\sin \theta = \frac{3}{\sqrt{10}}$

(2)
$$\cos \theta = -\frac{1}{\sqrt{10}}, \sin \theta = \frac{3}{\sqrt{10}}$$

[2] 解答 (1)
$$\theta = 30^{\circ}$$
, 150° (2) $\theta = 135^{\circ}$ (3) $\theta = 30^{\circ}$ (4) $\theta = 60^{\circ}$, 180°

(2)
$$\theta = 135^{\circ}$$

(3)
$$\theta = 30^{\circ}$$

(4)
$$\theta = 60^{\circ}$$
, 180

③ 解答
$$c=2$$
, $R=\sqrt{2}$

4 解答 (1)
$$b = 2\sqrt{7}$$
 (2) $C = 135^{\circ}$

(2)
$$C = 135$$

5 解答
$$R = \frac{\sqrt{21}}{3}$$
, $r = \frac{\sqrt{3}(5-\sqrt{7})}{6}$

6 解答
$$\cos\theta + \sin\theta = \frac{\sqrt{7}}{2}$$
, $\cos^3\theta + \sin^3\theta = \frac{5\sqrt{7}}{16}$

(2)
$$\frac{7\sqrt{15}}{4}$$

8 解答 AD=
$$3\sqrt{2}$$
, AM= $\frac{\sqrt{79}}{2}$

III 解答 (ア)
$$\sqrt{29}$$
 (イ) $-\frac{1}{\sqrt{170}}$ (ウ) $\frac{13}{2}$ (エ) 6 (オ) $\frac{36}{13}$

$$(1) -\frac{1}{\sqrt{170}}$$

(ウ)
$$\frac{13}{2}$$

$$(\cancel{7})$$
 $\frac{36}{13}$

国 解答
$$\frac{(\mathcal{T})}{(\mathcal{T})}$$
 $\frac{1}{2}$ $\frac{\sqrt{(\dot{\mathcal{T}})}}{(\mathcal{I})}$ $\frac{\sqrt{3}}{2}$ $(\dot{\mathcal{T}})$ 0 $(\dot{\mathcal{T}})$ 0 $(\dot{\mathcal{T}})$ 0 0

$$\frac{\sqrt{(\dot{\mathcal{D}})}}{(\mathcal{I})}$$
 $\frac{\sqrt{2}}{2}$

$$(\pm)\sqrt{(2)}$$
 4

/ 10

1 (1)
$$\frac{1}{\cos^2 \theta} = 1 + \tan^2 \theta = 1 + \left(\frac{1}{2}\right)^2 = \frac{5}{4}$$

よって
$$\cos^2\theta = \frac{4}{5}$$

$$\tan \theta > 0$$
 であるから $\cos \theta > 0$ で

$$\cos\theta = \frac{2}{\sqrt{5}}$$

$$\sin \theta = \tan \theta \times \cos \theta = \frac{1}{2} \times \frac{2}{\sqrt{5}} = \frac{1}{\sqrt{5}}$$

(2)
$$\frac{1}{\cos^2 \theta} = 1 + \tan^2 \theta = 1 + (-3)^2 = 10$$

よって
$$\cos^2\theta = \frac{1}{10}$$

$$\tan \theta < 0$$
 であるから $\cos \theta < 0$ で

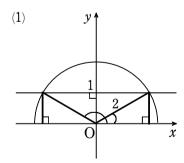
$$\cos\theta = -\frac{1}{\sqrt{10}}$$

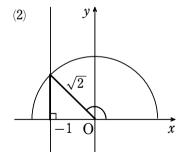
$$\sin\theta = \tan\theta \times \cos\theta = -3 \times \left(-\frac{1}{\sqrt{10}}\right) = \frac{3}{\sqrt{10}}$$

② (1)
$$2\sin\theta - 1 = 0$$
 から $\sin\theta = \frac{1}{2}$

よって
$$\theta = 30^{\circ}$$
, 150°

(2)
$$\sqrt{2}\cos\theta + 1 = 0 \text{ bis}$$
 $\cos\theta = -\frac{1}{\sqrt{2}}$





(3)
$$3\tan\theta = \sqrt{3} \ \hbar \ \delta \qquad \tan\theta = \frac{1}{\sqrt{3}}$$

よって
$$\theta = 30^{\circ}$$

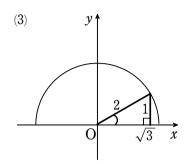
(4)
$$(\cos\theta + 1)(2\cos\theta - 1) = 0$$
 から $\cos\theta + 1 = 0$ または $2\cos\theta - 1 = 0$

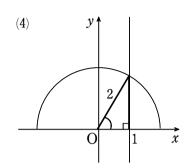
$$\cos\theta + 1 = 0$$
 $\pm k$ $\cos\theta - 1 = 0$

すなわち
$$\cos\theta = -1$$
, $\frac{1}{2}$

5 / 10

よって
$$\theta = 60^{\circ}$$
, 180°





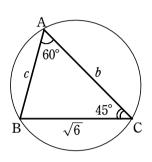
国 正弦定理から
$$\frac{\sqrt{6}}{\sin 60^{\circ}} = \frac{c}{\sin 45^{\circ}}$$

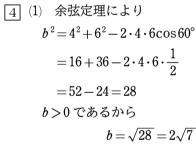
$$c = \frac{\sqrt{6}}{\sin 60^{\circ}} \times \sin 45^{\circ} = \sqrt{6} \div \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}$$

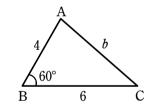
$$= \sqrt{6} \times \frac{2}{\sqrt{3}} \times \frac{1}{\sqrt{2}}$$

$$= 2$$

$$R = \frac{a}{2\sin A} = \frac{\sqrt{6}}{2\sin 60^{\circ}} = \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{2}$$



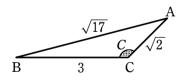




(2) 余弦定理により

$$\cos C = \frac{3^2 + (\sqrt{2})^2 - (\sqrt{17})^2}{2 \cdot 3\sqrt{2}}$$
$$= \frac{9 + 2 - 17}{2 \cdot 3\sqrt{2}} = -\frac{1}{\sqrt{2}}$$

したがって
$$C=135^\circ$$



5 余弦定理により
$$\cos A = \frac{2^2 + 3^2 - (\sqrt{7})^2}{2 \cdot 2 \cdot 3} = \frac{1}{2}$$

よって $A=60^{\circ}$

正弦定理により $2R = \frac{\sqrt{7}}{\sin 60^{\circ}}$

ゆえに
$$R = \frac{\sqrt{7}}{2\sin 60^{\circ}} = \frac{\sqrt{7}}{\sqrt{3}} = \frac{\sqrt{21}}{3}$$

また、 $\triangle ABC$ の面積をSとすると

$$S = \frac{1}{2} \cdot 2 \cdot 3\sin 60^\circ = \frac{3\sqrt{3}}{2}$$

$$S = \frac{1}{2} r (a + b + c)$$
 に代入して $\frac{3\sqrt{3}}{2} = \frac{1}{2} r (\sqrt{7} + 3 + 2)$

ゆえに
$$r = \frac{3\sqrt{3}}{5+\sqrt{7}} = \frac{3\sqrt{3}(5-\sqrt{7})}{(5+\sqrt{7})(5-\sqrt{7})} = \frac{\sqrt{3}(5-\sqrt{7})}{6}$$

[6] $\cos \theta - \sin \theta = \frac{1}{2}$ の両辺を 2 乗すると

$$\cos^2\theta - 2\sin\theta\cos\theta + \sin^2\theta = \frac{1}{4}$$

すなわち
$$1-2\sin\theta\cos\theta=\frac{1}{4}$$

よって
$$\sin\theta\cos\theta = \frac{3}{8}$$

$$\cos\theta + \sin\theta^2 = \cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta$$

$$=1+2\cdot\frac{3}{8}=\frac{7}{4}$$

 $0^{\circ} < \theta < 90^{\circ}$ より, $\cos \theta > 0$, $\sin \theta > 0$ であるから

$$\cos\theta + \sin\theta > 0$$

ゆえに
$$\cos\theta + \sin\theta = \sqrt{\frac{7}{4}} = \frac{\sqrt{7}}{2}$$

また
$$\cos^3 \theta + \sin^3 \theta = (\cos \theta + \sin \theta)(\cos^2 \theta - \cos \theta \sin \theta + \sin^2 \theta)$$

$$=\frac{\sqrt{7}}{2}\cdot\left(1-\frac{3}{8}\right)=\frac{5\sqrt{7}}{16}$$

[7] (1) △ABC に余弦定理を適用すると

$$AC^2 = 2^2 + 2^2 - 2 \cdot 2 \cdot 2 \cos B = 8 - 8 \cos B$$

△ACD に余弦定理を適用すると

$$AC^2 = 4^2 + 3^2 - 2 \cdot 4 \cdot 3\cos D = 25 - 24\cos D$$
 ②

四角形 ABCD は円に内接するから $D=180^{\circ}-B$

①, ②, ③ から $8-8\cos B = 25 + 24\cos B$

したがって
$$32\cos B = -17$$
 $\cos B = -\frac{17}{32}$

① に代入して
$$AC^2 = \frac{49}{4}$$

AC>0 であるから AC=
$$\frac{7}{2}$$

(2) (1)
$$\hbar$$
 5 $\sin B = \sqrt{1 - \left(-\frac{17}{32}\right)^2} = \frac{7\sqrt{15}}{32} = \sin D$

よって 四角形 ABCD の面積を S とすると

$$S = \triangle ABC + \triangle ACD$$

7 / 10

 $= \frac{1}{2} \cdot 2 \cdot 2\sin B + \frac{1}{2} \cdot 4 \cdot 3\sin D = 8 \cdot \frac{7\sqrt{15}}{32} = \frac{7\sqrt{15}}{4}$

(3) BE: ED = $\triangle ABC$: $\triangle ACD$

$$= \frac{1}{2} \cdot 2 \cdot 2\sin B : \frac{1}{2} \cdot 4 \cdot 3\sin D = 2\sin B : 6\sin B = 1 : 3$$

8 △ABCに余弦定理を適用して

$$\cos B = \frac{4^2 + 5^2 - 6^2}{2 \cdot 4 \cdot 5} = \frac{1}{8}$$

また AD は頂角 A の二等分線であるから

BD : DC = AB : AC = 4 : 6 = 2 : 3

したがって BD =
$$\frac{2}{5}$$
BC = $\frac{2}{5} \cdot 5 = 2$

よって △ABD に余弦定理を適用すると

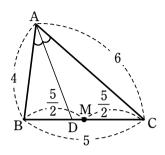
$$AD^2 = 4^2 + 2^2 - 2 \cdot 4 \cdot 2 \cdot \frac{1}{8} = 18$$

AD > 0 であるから $AD = 3\sqrt{2}$

△ABM に余弦定理を適用して

$$AM^2 \!=\! 4^2 \!+\! \left(\frac{5}{2}\right)^2 \!-\! 2 \!\cdot\! 4 \!\cdot\! \frac{5}{2} \!\cdot\! \frac{1}{8} \!=\! \frac{79}{4}$$

AM>0であるから AM= $\frac{\sqrt{79}}{2}$



[9] (1) \triangle ABCの外接円の半径を R とすると、正弦定理により

$$\sin A = \frac{a}{2R}, \sin B = \frac{b}{2R}$$

$$\sin A = \sin B$$
 から $\frac{a}{2R} = \frac{b}{2R}$ すなわち $a = b$

よって、△ABCはBC=CAの二等辺三角形である。

(2) 正弦定理により $\sin A = \frac{a}{2R}$, $\sin B = \frac{b}{2R}$

また、余弦定理により
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$

$$\sin A \cos A = \sin B \cos B$$
 $\Rightarrow \frac{a}{2R} \cdot \frac{b^2 + c^2 - a^2}{2bc} = \frac{b}{2R} \cdot \frac{c^2 + a^2 - b^2}{2ca}$

よって
$$a^2(b^2+c^2-a^2)=b^2(c^2+a^2-b^2)$$
 すなわち $a^2c^2-a^4=b^2c^2-b^4$

ゆえに
$$(a^2-b^2)(a^2+b^2)-(a^2-b^2)c^2=0$$

よって
$$(a+b)(a-b)(a^2+b^2-c^2)=0$$

$$a>0$$
, $b>0$ であるから $a=b$ または $a^2+b^2=c^2$

したがって、 $\triangle ABC$ は BC=CA の二等辺三角形 または $\angle C=90^\circ$ の直角三角形である。

| 10 山の高さを DH = x (m) とすると HA = x, HB = x, HC = $\sqrt{3}x$

$$\triangle$$
HABにおいて、余弦定理により $\cos A = \frac{100^2 + x^2 - x^2}{2 \cdot 100 \cdot x}$ ①

$$\triangle$$
HACにおいて、余弦定理により $\cos A = \frac{200^2 + x^2 - (\sqrt{3} x)^2}{2 \cdot 200 \cdot x}$ ②

①, ② から
$$\frac{100^2 + x^2 - x^2}{2 \cdot 100 \cdot x} = \frac{200^2 + x^2 - (\sqrt{3} x)^2}{2 \cdot 200 \cdot x}$$

整理すると
$$x^2 = 10000$$
 $x > 0$ であるから $x = 100$

したがって, 山の高さは 100 m

9 / 10

 Π 条件から CP = HQ = 1, GP = DQ = 2

(ア)
$$EG = \sqrt{4^2 + 3^2} = 5$$
 であるから

$$EP = \sqrt{EG^2 + GP^2} = \sqrt{5^2 + 2^2} = \sqrt[7]{29}$$

(1)
$$EQ = \sqrt{3^2 + 1^2} = \sqrt{10}$$
, $PQ = \sqrt{4^2 + 1^2} = \sqrt{17}$

△EPQ において、余弦定理により

$$\cos \angle EQP = \frac{EQ^2 + PQ^2 - EP^2}{2EQ \cdot PQ} = \frac{10 + 17 - 29}{2 \cdot \sqrt{10} \cdot \sqrt{17}} = ^{4} - \frac{1}{\sqrt{170}}$$

(ウ) sin ∠EQP > 0 であるから

$$\sin \angle EQP = \sqrt{1 - \cos^2 \angle EQP} = \sqrt{1 - \frac{1}{170}} = \frac{13}{\sqrt{170}}$$

よって
$$\triangle EPQ = \frac{1}{2}EQ \cdot PQ \sin \angle EQP = \frac{1}{2}\sqrt{10} \cdot \sqrt{17} \cdot \frac{13}{\sqrt{170}} = \frac{7}{2}$$

(エ) 三角錐 AEPQ の底面を $\triangle AEQ$ とすると、高さは 4 である。

よって、三角錐 AEPQ の体積を V とすると

$$V = \frac{1}{3} \triangle AEQ \times 4 = \frac{1}{3} \times \left(\frac{1}{2} \cdot 3 \cdot 3\right) \times 4 = {}^{\pm} \mathbf{6}$$

(オ) A から \triangle EPQ に下ろした垂線の長さを h とすると

$$V = \frac{1}{3} \triangle \text{EPQ} \times h = \frac{13}{6} h$$

よって
$$\frac{13}{6}h=6$$
 ゆえに $h=\frac{1}{13}$

 $| \mathbf{12} | \cos^2 C = 1 - \sin^2 C$

△ABCの外接円の半径を R とする. 正弦定理を適用すると

$$a \cdot \frac{a}{2R} \left(\frac{b}{2R} - \frac{c}{2R} \right) = b \left(\frac{b}{2R} \right)^2 - (b+c) \cdot \frac{b}{2R} \cdot \frac{c}{2R} - c \left\{ 1 - \left(\frac{c}{2R} \right)^2 \right\} + c$$

両辺に $4R^2$ を掛けると $a^2(b-c) = b^3 - (b+c)bc + c^3$

ゆえに
$$a^2(b-c) = b^2(b-c) - c^2(b-c)$$

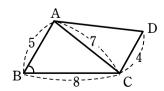
したがって
$$(b-c)(a^2-b^2+c^2)=0$$

よって
$$b=c$$
 または $a^2+c^2=b^2$

ゆえに、 $\triangle ABC$ は、AB=ACの二等辺三角形、または $\angle B=90^\circ$ の直角三角形。

[13] △ABCにおいて、余弦定理により

$$\cos \angle ABC = \frac{AB^{2} + BC^{2} - CA^{2}}{2AB \cdot BC} = \frac{5^{2} + 8^{2} - 7^{2}}{2 \cdot 5 \cdot 8}$$
$$= \frac{40}{2 \cdot 5 \cdot 8} = \frac{1}{2}$$



よって、 $\angle ABC = 60^{\circ}$ であるから $\sin \angle ABC = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$

ここで CD=4

10 / 10

$$AB \cdot \sin \angle ABC = 5 \cdot \frac{\sqrt{3}}{2} > \frac{5 \cdot 1.7}{2} = 4.25$$

よって CD < AB·sin ∠ABC ······① (0)

四角形 ABCD が台形であるとき AD //BC または AB //CD が成り立つ。

頂点 A から辺 BC に下ろした垂線を AH とすると, ① から

 $AH = AB \cdot \sin \angle ABC > CD \cdots 2$

AD//BCが成り立つと仮定すると、右の図のように

 $AH \leq CD$

となるが、これは②に矛盾する。

よって,AD//BCは成り立たないから,AB//CDとなる。

すなわち,辺ABと辺CDが平行である。 (**④**)

右の図のように、辺 BCの延長上に点 E をとる。

AB//CD から $\angle DCE = \angle ABC = 60^{\circ}$

△BCD において、余弦定理により

$$BD^2 = BC^2 + CD^2 - 2BC \cdot CD\cos \angle BCD$$

$$=8^2+4^2-2\cdot 8\cdot 4\cos(180^\circ-60^\circ)=112$$

BD > 0 であるから BD = $\sqrt{112}$ = $4\sqrt{7}$

